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Dynamical transition induced by large bubbles in two-dimensional foam flows

I. Cantat* and R. Delannay
GMCM, UMR 6626, Universite´ de Rennes (CNRS), 263 Avenue du Ge´néral Leclerc, 35042 Rennes Cedex, France

~Received 12 July 2002; published 13 March 2003!

We study the dynamical behavior of a large bubble embedded in the plug flow of an ordered two-
dimensional foam. At a critical velocity, the foam structure becomes instable and the large bubble migrates
through the foam faster than the mean flow. This size segregation is due to viscous effects and happens only for
flow velocities larger than a given threshold. We present analytical and numerical predictions for the pressure
field, the velocity threshold, and the relative velocity of the large bubble. We show that the phenomenon can
induce flow destabilization with dramatic effects on foam transport.
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Foams are important industrial materials. Their flows e
hibit complex behavior involving elastic, plastic, and visco
effects. So far, their rheology has defied attempts to de
general constitutive relations. Since they can be more ea
observed and modeled, the flows of two-dimensional~2D!
foams have stimulated experimental and theoretical inte
@1–6#. A monodisperse foam subject to a pressure gradien
a Hele Shaw cell with smooth lateral boundaries gives ris
a simple plug flow. In contrast, in case of a polydispe
foam, the plug flow undergoes a sharp dynamical transi
at a critical velocity thresholdv t . Larger bubbles insinuate
themselves through the foam faster than the mean flow
shown by Lordereau’s experiments@7#. Once fully devel-
oped, this instability induces strong spatial pressure fluc
tions leading to films breakage. It may have dramatic con
quences for foam flows in fracture, as encountered
enhanced oil recovery. This phenomenon cannot be
plained with a quasistatic point of view. In fact, unlike she
flows, no external constraint enforces bubble reorganizat
and changes in the foam structure are intrinsically relate
dissipative processes. A large bubble~LB! gives rise to a
smaller local film density and, consequently, to a low effe
tive viscosity averaged on a mesoscopic scale. As for
Saffman Taylor instability, large bubbles migration is driv
by viscosity contrast. However, the coupling with the elas
plastic response of the film network leads to subtle spec
behaviors. This paper is devoted to the determination
similarity laws for the instability threshold and for the larg
bubble asymptotic velocity in the case of a single lar
bubble embedded in an ordered foam. We establish analy
expressions for the pressure, tension, and viscous force
low the velocity threshold. These results agree well with n
merical simulations and account for the experimental ob
vations qualitatively.

We consider a dry soap froth organized as a monola
between two horizontal glass plates. The froth experienc
steady push through the cell by newly produced bubb
Inertial terms are negligible and the force balance on e
film involves surface tension, gas pressure, and visc
forces. In a monodisperse regular foam, plug flow occ
without bubble deformation and the viscous force is th
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identical for each bubble. As discussed later, this force
related to the friction between the films and depends on
flow velocity. It is balanced by a uniform pressure gapdP
between two successive bubbles in the flow direction~Fig.
1!. Creating a large bubble by the removal of films su
presses pressure jumps. In order to balance the macrosc
pressure gradient imposed on the foam, such removal m
be compensated by larger pressure gapsDPi distributed in a
a priori unknown way through the adjacent films, as d
picted in Fig. 1. As this paper will show, the elastic netwo
distortion adjusts to compensate for this force discrepanc
low velocity, and the plug flow is maintained. Past a critic
threshold, the plastic limit is reached and the compensa
is driven instead by viscous forces, thus making these fi
move faster than the mean flow. This qualitative descript
of the features illustrates the crucial role of dissipative p
cesses being the driving force behind large bubble migrat
Their competition with surface tension effects leads to
instability threshold.

The dissipation is localized near the Plateau borders
is associated with fluid viscosity@8#. The no-slip condition
imposes large velocity gradients in regions in contact w
the glass boundary. Additionally, because the typical bub
size is much larger than the gap between the two plates, t
regions of high gradient constitute the major part of the P
teau borders. Consequently, the dissipation is dominated
viscous friction between the film and the plate and thus
pends on the local film velocity and not on the velocity d

FIG. 1. Schematic view of the pressure field. In order to ful
the boundary conditionsP1 and P2, the pressure gapsDPi across
films around LB must be larger than the referencedP.
©2003 The American Physical Society01-1
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ference between neighboring bubbles. This viscous fo
may follow various velocity power laws, depending on t
local geometry and on the flow rate@9,10#. For the sake of
simplicity we assume a linear dependence of the force an
constant overall mobility parameterh, as already propose
in Ref. @3#. This does not affect the qualitative features of o
results. The dissipation function is thusQ5*hv2 dl, where
v is the velocity norm of the soap films. The 2D dry foam
described on an overhead view by a line network on wh
the integral is performed.

At equilibrium, bubble walls are cylindrical, with the cu
vature in the plane of the glass. In contrast, out of equi
rium films have two nonzero and nonuniform radii of curv
ture and the very complex resulting shape will
disregarded in our model. Numerically, vertical Plateau b
ders and bubble walls are represented, respectively, by p
at positionsr i ~vertices! and by segmentsl i j connecting these
vertices~edges! as done in Ref.@4#. The equations of motion
derive from the following energy equation in variation
form:

]Q

]v i
1

]H

]r i
50, ~1!

wherev i is the velocity of theith vertex. The dissipationQ is
expressed as a discrete sum of contributions from vertex
sitions

Q5
h

2 (
i , j

l i j

2
~vi !

2, ~2!

where i varies over all vertices andj represents the thre
neighbors of vertexi. The energyH is

H5g(
i . j

l i j 2(
k

PkAk . ~3!

The first sum is the total interface length, whereg is related
to the physical surface tensiong0 and to the Hele Shaw ce
thicknessh usingg52hg0. The second term is a sum ove
all bubbles. The Lagrange multiplierPk , associated to the
kth bubble areaAk , enforces the conservation of the latter.
is related to the physical bubble pressureP0,k by the relation
Pk5hP0,k and will be called a pressure. Time scales are
short for gas diffusion to take place, and films do not ruptu
This model is the simplest to capture qualitatively the p
nomenon of interest.

The numerical simulation is performed in a periodic arr
and the initial condition is an ordered monodisperse foam
bubbles with uniform sized and a single LB of sizeD at
position r0. At each time step, a bubble line far from LB
pushed at constant velocityv0ux , and other vertices are dis
placed as prescribed by Eq.~1!, which provides an explicit
expression for the velocity as a function of the positions
neighbor swapping event (T1 process! is performed when
two vertices become closer than a given valueed, wheree
represents the square root of the liquid fraction. After a tr
sient depending on the initial large bubble shape, a station
regime is reached in which the large bubble exhibits a re
03150
e

a

r

h

-

r-
ts

o-

o
.
-

f

-
ry
-

lar almond shape oriented along the flow~see Fig. 2!. Plug
flows are observed at low velocity. However, as Fig. 3 illu
trates, the large bubble reaches a velocityvLB.v0 for ve-
locities faster than a thresholdv t;g/(hD).

It makes its way through two small bubble columns, se
rating bubbles ahead, and restoring the connections beh
Thus, swapping occurs mainly around two ‘‘fracture points
The leading point propagates the fracture and the trailing
heals it. After the transient, the migration of the large bub
does not leave any defect in the foam. However, this sim
migration can become more complex in two ways. First,
pending on the aspect ratioD/d, a large bubble may carry a
few small ones in its wake. Second, it may also entrain d
locations created during the transient. In this case, the in
bubble connections are shifted after the large bubble pas
This behavior creates a rich dynamical phase diagram, wh
we will analyze further in the future.

FIG. 2. Large bubble shape in the stationary regime~numerical
simulation!. The foam flows downwards andv0.v t . Crystalline
organization is recovered behind the large bubble.

FIG. 3. Large bubble migration velocity. Aspect ratioD/d
53.5, e50.1.
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We now develop an analytical prediction of the viscou
tension, and pressure force fields exerted on the foam fi
below the velocity threshold. From these, we deduce the
gration threshold. At equilibrium, the whole pressure fie
can be determined from a visualization of the film netwo
@11#. Since in a nonquasistatic flow regime, viscous forc
induce a finite curvature in planes normal to the transpa
plates, it is virtually impossible to infer the pressure diffe
ence from images of the flow. Consequently, analytical p
dictions for the pressure field represent an interesting re
by itself.

Below the threshold, all velocities conform tov5v0ux .
Outside the large bubble, the total film length is 1/d per unit
surface of the 2D foam, disregarding a geometrical prefa
close to unity. The viscous force per unit surface, avera
on the scale of a bubble, is thus

Fv isc52
hv0

d
ux . ~4!

The large bubble induces a friction deficitdf5nhv0d ux
proportional to the numbern of missing soap films. ForD
@d, n is on the order ofD2/d2. Rearranging Eq.~4! and
assuming that the deficit is concentrated atr 5r 0, we write

Fv isc52¹S hv0x

d D1d~r2r 0!
hv0D2

d
ux . ~5!

For v0.v t , the large bubble migration modifies the veloci
field and inducesT1 events that increase the dissipation ra

The spatial distribution of the surface tension stress
more complex. Even at equilibrium the large bubble indu
network distortion and inhomogeneities in surface tens
stress which are balanced by the equilibrium pressure di
bution Peq . This inhomogeneities are intrinsically related
the foam topology: on an average, a bubble is overpres
ized if it has less than six neighbors, and underpressur
otherwise@1#. So, in term of resulting equilibrium surfac
force, the surface tension contributionFeq counterbalanceds
the pressure contribution2Feq . During the flow, in a frus-
trated attempt to make its way through the foam, the la
bubble induces new deformations. Below the threshold,
foam exhibits a linear elastic response. The induced ou
equilibrium tension stress is related to the bubble displa
mentX from the equilibrium position through an elastic c
efficient m. Since the foam is incompressible,“•X50 and
the elastic surface force isF5m¹2X. Then, the total contri-
bution of the tension to the surface force is

Ftens5Feq1m¹2X, ~6!

Finally, the pressure forces are decomposed in the s
way. We define the dynamical pressure field asP̄5P

2Peq . Unlike Peq , P̄ is smooth even at the bubble sca
and its gradient is meaningful, so

Fpress52Feq2¹ P̄. ~7!

We combine Eqs.~5!–~7! and find the equation of motion
03150
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d
1 P̄D1m¹2X52d~r2r0!

hv0D2

d
ux , ~8!

“•X50. ~9!

An analytical solution of these equations exists for
boundless domain~see Ref. @12#!, with the asymptotic
boundary conditionhv0x/d1 P̄50, which corresponds to a
vanishing influence of the large bubble at infinity. For o
purpose, the determination of the whole displacement fiel
useless and will be detailed in a future work. The press
field expression is

P̄52
hv0x

d
1

hv0D2

2pd

x2x0

~r2r0!2
, ~10!

except for the large bubble, for which only the first ter
applies. Figure 4 compares values ofP̄1(hv0x/d) obtained
by the full numerical simulation and the solution of Eq.~10!.
The theoretical predictions of the latter capture well the fu
tional relationship. Hiding the influence of the large bubb
anisotropy, the artificial localization of the missing visco
forces through the distributiond is presumably responsibl
for the small scale discrepancies obtained in they direction
~see Fig. 4 and caption!. The uncertainty on the prefactor i
mainly due to the approximate value ofn that can be easily
cured at the price of the generality. Finally, the use of pe
odic conditions for the numerical simulation induces a sm
overestimation of the dynamical pressure field at a long d
tance due to the influence of the large bubble periodic
ages.

The pressure discontinuity at the large bubble boundar
given by the last term in Eqs.~10!, with r5D/2ux and must

FIG. 4. Pressure for two representative bubble columns orien
along the flow, oncePeq and the average pressure gradient ha
been subtracted, for a velocity ratiov0 /v t50.95 and an aspect ratio
D/d53.5. Symbols are numerical predictions at the positio
shown and lines are mathematical functions indicated on the leg
The theory of Eq.~10! predicts a function of similar shapef (j)
51.9j/@j21(y/d)2#.
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be counterbalanced by the tension stress. At the migra
threshold, this value thus reaches the plastic threshold o
order ofg/d @13# :

hv tD
2

2pd

2

D
5

g

d
. ~11!

The velocity threshold is thus

v t;
g

hD
. ~12!

For small aspect ratio, the exact value forn in Eq. ~5! must
be used leading to a diverging threshold ford5D. Numeri-
cally, the threshold depends linearly on the parametere gov-
erning the T1 transformations. An extrapolation ate50
gives a good agreement with analytical predictions.

For larger velocities, a stationary regime is reached w
periodic motion. Elastic energy storage alternates with di
pativeT1 transformations localized near the large bubble.
the tension forces are limited by the plastic thresho
whereas viscous and pressure forces increase linearly

v0, it becomes thus negligible in Eq.~9!. We get P̄
;hv0x/d and the pressure gap on the films at the front a
at the rear of the large bubble scales asDP;hv0D/d. We
deduce the asymptotic velocity law as a function of the d
ferent physical parameter:

vLB;v0

D

d
. ~13!

The asymptotic behavior is difficult to observe nume
cally ~see Fig. 3!. Very large pressure gradients must be i
posed on the foam, and the incompressibility constraint
e

.
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comes hard to ensure. Future experimental investigat
will determine if this regime is reached before other mec
nisms, such as film ruptures, strongly modify the flow natu

In conclusion, our study explains the origin of the inst
bility giving rise to the large bubble migration. It predicts th
existence of the instability threshold and produces analyt
expressions for the corresponding velocity and for the pr
sure field. A numerical model of an ordered foam agreed w
with the predictions. This study naturally leads to new qu
tions on the dynamic interactions between several la
bubbles in a bidisperse foam. In particular, we have exp
mentally observed the formation of long streamwise cha
of large bubbles percolating through the Hele Shaw cell. T
phenomenon has profound effects on the flow. These ch
transport the major part of the volume flux at high speed. T
soap films involved are submitted to high stresses, and a
lanches of film breakages occur frequently, thus destroy
suddenly the whole column and short circuiting the over
pressure drop until a new foam fulfills again the free passa
This process related to the large bubbles interactions
organization is highly undesirable in industrial flow and fu
ther studies of this phenomenon are thus of practical inter
The force fields determined in this paper can be easily g
eralized for sparse large bubbles of various sizes if their
fects are additive. An interesting open question is whethe
linear elastic coupling generates the interaction observed
tween large bubbles, or if nonlinear effects dominate. In c
of continuous size distribution, we expect very rich dynam
cal behaviors that remain to be explored.
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